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Semi-Supervised Learning

> Unsupervised Learning (Clustering)
— Aim: To identify structures in the feature space
— Prerequisites: Set of training elements

> Supervised Learning (Classification)
— Aim: To find a mapping from feature space to label space
— Prerequisites: Set of labeled training elements
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Semi-Supervised Learning

> Semi-Supervised Learning (Classification)
— Exploit information about the feature space from unlabeled data to 

find a mapping from feature space to label space
— Prerequisites: Set of labeled and unlabeled training elements
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Semi-Supervised Learning

> Semi-Supervised Learning (Classification)
— Exploit information about the feature space from unlabeled data to 

find a mapping from feature space to label space
— Prerequisites: Set of labeled and unlabeled training elements
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Why Semi-Supervised Learning

> Unlabeled Data might be cheap to acquire and vastly available 
while labeled data is rare and costly

> In the case of Handwriting Recognition:
— the ground truth has to be created manually
— unlabeled handwritten text is nearly everywhere
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Handwriting Recognition

> Data
— IAM Handwriting Data Base

> Features
— Extracting Features using a sliding window approach
— Result: Sequence of 9-dim vectors
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Sequential Data

> No vectorial description
> Lack of algorithmic 

tools
> No clear separation 

between different 
elements

> No easy distance 
measure

> Classification with an 
exponentially growing 
class label space
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How Semi-Supervised Learning

> Self-Learning
— A recognizer is trained 

on the labeled set
— The recognizer 

decodes the unlabeled 
set

— Confident recognitions 
are used to create a 
new training set

> Co-Learning
— Two (different) 

recognizers are 
trained on the labeled 
set

— The recognizer 
decodes the unlabeled 
set

— Confident recognitions 
are used to create a 
new training set for the 
other recognizer
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Theoretical Background Self-Learning

> Self-Learning is a form of Expectation-Maximization

> EM maximizes the likelihood of incomplete data fitting to a 
model

> EM iterates two steps

— E-step: Computing the expectation of the incomplete data 
according to the model

— M-step: Selecting new model parameters
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Theoretical Background Self-Learning

> Missing labels can be seen as incomplete data

> Self-Learning iterates two steps

— E-Step: Computing the missing labels

— M-Step: Retrain the recognizer using these new labels
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Theoretical Background Self-Learning

EM requires the expectation value of incomplete data

But:
computing the expectation value of labels is not possible
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Theoretical Background Self-Learning

EM requires the expectation value of incomplete data

But:
computing the expectation value of labels is not possible

Example:
“Let us” 80% probability
“Lotus” 17% probability
“Lexus” 03% probability

0.8 “Let us” + 0.17 “Lotus” + 0.03 “Lexus” = ???
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Theoretical Background Self-Learning

We select only those words, that are recognized with a 
high confidence and use that label

“Let us”   80% probability
“Lotus”    17% probability
“Lexus”   03% probability

“Let us”   100% probability
“Lotus”        0% probability
“Lexus”       0% probability

“Let us”   60% probability
“Lotus”    30% probability
“Lexus”   10% probability

Ignore word
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Self-Learning

What is the best threshold?

> High Threshold
— Nearly no errors in the labels
— Very few data elements enter the new training set
— Retraining set nearly does not change
—

> Low Threshold
— More data elements enter the training set
— Uncertain recognitions include error
— Erroneous labels in the training set impede the performance
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Experimental Evaluation

> Single word recognition
> Recognizer Recurrent Neural Networks
> Data set

— 4'000 most frequent words from the IAM 
data base

— 4 sets
Test set: 5,342 words from 52 writers
Validation set: 5,590 word from 56 writers
Work set: 38,127 words from 238 writers

Split up into labeled train set and 
unlabeled set

> Two recognition modes
— Recognition with and without a dictionary
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Recognition Confidence

> The Confidence returned by the Neural Networks is not 
reliable

> Train of several Neural Networks
> Majority voting on the outputs
> Number of agreeing Networks are used as recognition 

confidence
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Confidence based Rules for Selecting 
Elements for Retraining
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Confidence based Rules for Selecting 
Elements for Retraining

> We investigated different retraining rules
> The precise thresholds were set in each iteration according to 

the validation set
> All words having a confidence higher that the threshold were 

selected for retraining

> High Threshold Retraining Rule
— Threshold set to lowest value without errors

> Medium Threshold Retraining Rule
— Threshold set to lowest values with more correct than incorrect 

recognitions
> Low Threshold Retraining Rule

— Threshold set to  -infinity 
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2000 labeled words, no dictionary
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Low Threshold Retr. Rule



Semi-Supervised Learning for Handwriting Recognition

21

2000 labeled words, with dictionary
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Low Thresholds Retr. Rule
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Increase in Accuracy, no dictionary
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Increase in Accuracy, with dictionary
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Results Semi-Supervised Learning

> A significant increase recognition accuracy is possible
> The retraining rules used to create the new training set are 

crucial for the success
> The optimal retraining rules are hard to estimate beforehand.

> The next steps will include
— Self-Learning with HMM
— Co-Learning HMM-NN
— SSL for text lines
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