

IM2: Audio Processing Oct. 2008 – Sept. 2009

Key Achievements

Overview of IM2.AP Partners

John Dines (IP head), Phil Garner (Deputy) Petr Motlicek, Mathew Magimai Doss Students: Deepu Vijayasenan, Joel Pinto

Gerald Friedland, Nelson Morgan Students: Mary Knox, Oriol Vinyals Completed PhD: Kofi Boakye, David Gelbert

Overview of IM2.AP Projects

- Automatic Speech Recognition
 - Meeting room speech recognition
 - Spoken term detection
- Speaker recognition, segmentation and clustering
 - (Overlapping) speech detection & segmentation
 - Diarization (who spoken when)
- Microphone array processing for signal enhancement and ASR
 - Microphone array beamforming
- High level modelling of spoken language
 - Summarization

Overview of IM2.AP Goals / milestones

- Long-term goals
 - Conduct fundamental research
 - Application of this research to IM2 domain
 - Dissemination via publication and cooperation with IM2 partners

This year: strong focus on working prototypes

- Requirement for real-time, online processing
- Both intra- and inter- IP integration effort
- Dissemination of software tools

Participation in NIST Rich Transcription evaluations

- Continued improvement on the multiple distant microphone task (MDM)
- Paradoxically, individual headset microphone task (IHM) keeps on getting more difficult

ICSI-SRI topped IHM task, Idiap-AMIDA MDM task

Reversal of previous years' results

	AMIDA (Idiap)	ICSI-SRI
IHM	27.4	25.5
IHM (ref)	23.5	23.8
MDM	33.2	33.3

• Real-time, online meeting room ASR

- Offline systems
 - Big, complicated and precariously glued together by half a dozen different scripting languages
- Online systems
 - Need to be reliable, fast, low latency, have limited resources (minimal parallelization), all while making least possible sacrifice to accuracy

Real-time, online meeting room ASR

- RT-ASR data flow framework (above)
- Juicer decoder performance (right)

- Publicly released software
 - "Juicer" ASR decoder: <u>http://www.idiap.ch/software/juicer</u>
 - "Tracter" ASR front-end:
 - http://www.idiap.ch/software/tracter
 - "Beamformit" microphone array beamformer: <u>http://www.icsi.berkeley.edu/~xanguera/beamformit</u>

Clustering algorithm

Short Speaker Diarization:

Automatic adaption of the key parameters to the meeting length

- Agglomerative Information Bottleneck (AIB)
 - Non-parametric clustering
 - X is a set of elements to cluster into set of clusters C and Y be set of variables of interest
 - Relevance variables are generated by a background GMM with components Y
 - Cluster representation C should preserve as much information as possible about Y while minimizing the distortion between C and X
 - Objective is to minimise

 $I(Y, C) - \beta I(X, C)$

- Recent investigation of stream combination strategies
 - Typically, combination of features with diverse statistics is addressed by use of ad hoc stream weights
 - AIB enables combination of relevance variable postr distributions

$$P(Y|X) = \sum_{i} P(Y|X, M_{F_i}) P_F^i$$

where M_{F_i} is background GMM for feature F_i P_F^i is prior probability of stream F_i

- Realignment procedure using IB criterion
 - Refine speaker boundaries by realigning our cluster models with underlying features
 - Maximising *I*(*Y*,*C*) equivalent to minimisation of KLdivergence

$$\arg\min_{c}\sum_{t}KL(P(Y|x_{t})||P(Y|c_{t}))$$

- EM solution for $P(Y|C_t)$ enables realignment on posterior features
- Simple incorporation of multiple streams

Evaluation on RT06 Eval

Feature	w/o realign	HMM/ GMM	KL- based
MFCC	19.3	15.7	15.7
TDOA	24.4	25.5	23.9
MFCC+ TDOA	11.6	10.7	9.9

Proposed realignment more effective for multi-stream system

- Audio-visual diarization
 - Initial investigation by ICSI & Idiap showed that visual information (motion, focus of attention) could provide additional robustness to audioonly diarization
 - The price of success!
 - This work is now being conducted in MPR

Key Achievements Student Theses

- PhD Kofi Boayke (ICSI): "Audio Segmentation for Meetings Speech Processing"
- PhD David Gelbert (ICSI): "Ensemble Feature Selection for Multi-stream Automatic Speech Recognition"
- Masters David Imseng (ICSI-EPFL): "Novel Initialization Methods for Speaker Diarization"
 - Now pursuing PhD at Idiap

Key Achievements Technology Transfer

CTI project Veovox

- Formation of start-up "Veovox" specialising in ASR solutions for order taking systems (e.g. PDA-based restaurant ordering)
- Small vocabulary, restricted grammar, but extremely robust to noise, accented speech
- Core technology combines RT-ASR data flow framework with posterior-based template ASR both developed at Idiap
- First systems should be tested in late 2009/early 2010 with various catering partners

www.veovox.com

Summary

• ASR

- Good performance in NIST RT evaluation
- Real-time capability
- Diarisation
 - Optimisation for short meetings
 - Succesful combination of multiple streams
- Tech transfer to VeoVox