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Objectives

I Modelling user interaction (relevance feedback)

I Improve image retrieval through indexing

I Incremental image annotation
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Nature of the data (relevance feedback)

I Query-by-example paradigm

I User refines query by marking positive (+1) and negative (-1)
examples from results

I Query is refined until the search terminates (successfully or not)

At any time, we have a collection of M images and N queries. The
collection of relevance judgements can be represented as a matrix R of
co-occurrences:

Sessions

Images



q1 q2 . . . qN

d1 1 −1 . . . 1
d2 −1 0 . . . −1
d3 1 −1 . . . 0
...

...
...

. . .
...

dM 1 0 . . . −1


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Topic modelling

I Goal: explain observed co-occurrences by estimating linear
combinations of hidden factors

I Text modelling: Underlying topics are said to generate word
observations in text documents

I In our case, the hidden factors are the users’ intent during search as
well as concepts or objects expressed in the images of the collection
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Non-negative matrix factorisation (NMF)
Seek an approximation R ≈WH such that the Frobenius norm
||R −WH||F is minimised. We iterate update steps:

Hcj ← Hcj

∑
i

WicRij

(WH)ij∑
i Wic

(1)

Wic ←Wic

∑
j

HcjRij

(WH)ij∑
j Hcj

(2)

where W is the image-topic matrix and H is the topic-query matrix (Lee
and Seung, 1999).
NMF constrains values in the co-occurrence matrix to be >= 0, so we
scale our RF data (Rij ) into this range:

−1→ 0

0→ 0.5

1→ 1

which can be loosely interpreted as the probability of an image di being
relevant to a query qj .
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Singular value decomposition (SVD)

Any matrix R can be rewritten in the form:

R = UΣV T (3)

where U are the left singular vectors, Σ are the singular values (square
roots of the eigenvalues), and V T are the right singular vectors.

A rank-k approximation to R can be achieved by retaining the k largest
singular values in Σ:

Rk = Uk ΣkV T
k (4)

Orthonormality constraint:

UT U = V T V = I

||U|| = ||V || = 1
(5)
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User Relevance Model (URM)

Extension of probabilistic latent semantic analysis (PLSA) (Hofmann,
1999)

I Generative, probabilistic model

I Documents and queries assumed to be generated from the same
concept-space

Relevance judgement generation:

I generate a query with probability P(q)

I select latent concept with probability P(c |q)

I select a document with probability P(d)

I generate a relevance judgement P(r |d , c)
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User Relevance Model (URM)

Joint probability (co-occurrence observations) P(r , d , q) is defined as:

R = P(r , d , q) = P(q)P(d)P(r |d , q), (6)

where

P(r |d , q) =
∑
c∈C

P(r |d , c)P(c |q). (7)

Following Bayes rule, we can rewrite the joint probability as:

P(r , d , q) =
∑
c∈C

P(c)P(q|c)P(d)P(r |d , c). (8)

“Fit” of latent variables to observed data measured using log-likelihood:

L =
∑
d∈D

∑
q∈Q

∑
r

n(r , d , q)logP(r , d , q). (9)

Expectation-maximisation used to converge on a maximum L.
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Document similarity with topic models

I Models lend themselves to item/attribute similarity

I We can use these similarity graphs to propagate meta-data and
index images

Image similarity using dot
product:

I NMF: WW T

I SVD: UUT

I URM: P(r |d , c)P(r |d , c)T
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Experiments

Corel image collection, 1000 images, 10 categories, 100 images per
category, 3-5 annotations per image.

I Sparsity 95%

I Noise 10%

I 3000 artificial query sessions

I 10 latent variables
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Image similarity experiments
Accuracy measured using mean average precision: each image used as a query; ranked list of most similar images
yields a score closer to 1 the more the relevant images are ranked first (an indication of images clustered over
latent topics)
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Image annotation experiments
For each unannotated image, rank top-I similar images and select w tags
from the pool of W total tags.

Formally:

We repeat a draw t1..w ∼ U [1, W ] (without replacement) for each
unannotated image where w equals the desired number of annotations
(w = 4).
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Image annotation experiments

Original vocab size: 253; depleted vocab size: 153; unannotated images: 2
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Image annotation experiments
Accuracy measure: Euclidean distance between term-document matrices
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Example annotations
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Conclusions

Conclusions

I Introduced a probabilistic User Relevance Model

I Recovery of underlying concepts from documents possible under
sparse conditions

I Application to retrieval and image annotation

Future work

I Images with no tags can be brought to the attention of the user in
order to ellicit interaction

I Tag quality could be improved by supplementing the RF judgements
with low-level feature information (pseudo-relevance feedback)
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Thank you
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Expectation-maximisation for URM

L =
∑
d∈D

∑
q∈Q

∑
r

n(r , d , q)logP(r , d , q), n(r , d , q) ∈ {0, 1} (10)

E-step:

P(c |r , d , q) =
P(c)P(q|c)P(r |d , c)∑

c∈C P(c)P(q|c)P(r |d , c)
, (11)

M-step:

P(q|c) ∝
∑
d∈D

∑
r

n(r , d , q)P(c |r , d , q), (12)

P(r |d , c) ∝
∑
q∈Q

n(r , d , q)P(c |r , d , q), (13)

and

P(c) =

∑
d∈D,q∈Q,r n(r , d , q)P(c |r , d , q)∑

d∈D,q∈Q,r n(r , d , q)
. (14)
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